Strain-Assisted, Unusually Facile Hydrolysis of the Nitrogen-Bridge of a Tricyclic Uracil N-Cyclonucleoside

Katsumaro MINAMOTO,* Kishiko AZUMA, Yorihisa HOSHINO, and Shoji EGUCHI*

Institute of Applied Organic Chemistry, Faculty of Engineering,

Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464

With respect to "up" amination of the sugar part of nucleosides through an appropriate N-cyclonucleoside, 5',N-anhydro-2,2'-imino-1-(2'-deoxy- β -D-arabinofuranosy1)uracil proved to be easily hydrolyzed to 1-(2',5'-N-anhydro-5'-amino-2',5'-dideoxy- β -D-arabinofuranosy1)-uracil ($\underline{2}$) in dilute alkaline or acidic medium. $\underline{2}$ was characterized as its acetylimino analogue or hydrochloride, and proved to transform to 5',N-anhydro-6,2'-imino-1-(2'-deoxy- β -D-arabinofuranosy1)-5,6-dihydrouracil spontaneously.

As part of our program to exploit the chemistry of nitrogen-bridged nucleosides, we have reported the first alkali-catalyzed, hydrolytic cleavage of the nitrogen bridge of some 2,3'-arylimino¹⁾ and 2,2'-arylimino uracil nucleosides^{2,3)} to realize "up" arylamination of the sugar part, while hydrolytic fission of the imino or alkyl-substituted-imino bridge in similar 2,3'- or 2,2'-imino or alkyl-substituted-imino nucleosides has not yet been achieved. Hence, the above stated arylamination through an appropriate N-bridged nucleoside has been interpreted by the "aryl-promoted resonance stabilization of an intervening nitrogen anion" formed under the alkaline conditions used.¹⁾

At this stage, our attention has been partially directed to probably strained, multi-cyclic N-bridged nucleosides as substrates for this type of hydrolysis: the imino bridge of this class of compounds may be sensitive to hydrolysis. Moreover, this simple working hypothesis lets us visuallize a new scope for chemical transformations of nitrogen-bridged nucleosides. This paper describes an example of unusually facile, hydrolytic bridge fission of such a multi-cyclic system of pyrimid-

HO
$$\frac{1}{2}$$
HO $\frac{1}{2}$
HO $\frac{3}{2}$
HO $\frac{3}{2}$
HO $\frac{3}{2}$

ine series.

Immediately after treatment of 5',N-anhydro-2,2'-imino-1-(2'-deoxy- β -D-arabinofuranosyl)uracil ($\underline{1}$) with a 1:1 mixture of 1 M NaOH and MeOH at room temperature, extensive TLC-monitoring was initiated with the use of silica gel plates and CHCl $_3$ /MeOH (9:1) as a developer to reveal that a single UV-absorbing, more polar product (\underline{A}) was formed with a trace of UV-transparent product (\underline{B}) having a mobility similar to that of $\underline{1}$ and that the starting material was consumed after 3 min. Furthermore, subsequent TLC-monitoring showed that the product \underline{A} changed rather rapidly to \underline{B} to attain finally an equilibrium between both, in favor of the latter. Repeated attempts to isolate the seemingly non-crystallizable product \underline{A} failed, while the product \underline{B} was isolated from the mixture as a highly crystalline substance of mp 200-202 °C (dec) (MeOH) in over 30% yields and characterized as 5',N-anhydro-6,2'-imino-1-(2'-deoxy- β -D-arabinofuranosyl)-5,6-dihydro-uracil ($\underline{3}$). $^{4-6}$) Similar results were obtained when $\underline{1}$ was treated with 1 M Et $_3$ N/H $_2$ O-MeOH (1:1) (5 °C, 14 h; room temperature, 1.5 h).

In order to characterize the product \underline{A} , we chose to block the imino group to evade the Michael type addition. Thus, after hydrolysis of $\underline{1}$ in 1 M Et $_3$ N/H $_2$ O-MeOH (1:1) followed by quick evaporation and drying, the residue was treated with Ac $_2$ O in pyridine at room temperature to afford a 75% yield of 1-(2',5'-N-anhydro-5'-acetylamino-2',5'-dideoxy- β -D-arabinofuranosyl)uracil ($\underline{4}$), which was shown to be homogeneous in terms of TLC using several solvent systems and to have a normal UV-absorption pattern of the uridine type. ⁷) However, ¹H NMR measurement at 500 MHz gave a pair of closely resembling spectra for a 1:1.2 mixture of two isomers which might depend upon a slight conformational difference in the puckering of the

sugar moiety or the base-sugar tortion angle. ^{8,9)} The structure of the product \underline{A} was thus identified as 1-(2',5'-N-anhydro-5'-amino-2',5'-dideoxy- β -D-arabino-furanosyl)uracil (2).

On the other hand, in situ trap of the nucleophilic nitrogen lone pair of the imino bridge appeared to be more economical for an unambiguous synthesis of $\underline{2}$. Thus, treatment of $\underline{1}$ with 1 M HCl-MeOH (1:1) at room temperature for a moment and rapid elimination of the hydrolysis medium allowed direct isolation of hydrochloride of $\underline{2}$ as crystals in a nearly quantitative yield. $\underline{10}$

The results described here represent the first hydrolytic cleavage of the formally alkyl-substituted imino bridge of a N-cyclonucleoside and also the first successful acidic fission of this type. This concept of strain-assisted hydrolysis of the base-sugar nitrogen bridge has led to a promising result even in the purine series. 11) It must be noted that the condensed aliphatic nitrogen heterocycle newly formed may be amenable to a variety of further transformations involving the C-N fission by the methods commonly used in general organic chemistry.

References

- 1) K. Minamoto, T. Tanaka, K. Azuma, N. Suzuki, S. Eguchi, S. Kadoya, and T. Hirota, J. Org. Chem., 51, 4417 (1986).
- 2) K. Minamoto, K. Azuma, T. Tanaka, H. Iwasaki, S. Eguchi, S. Kadoya, and R. Moroi, J. Chem. Soc., Perkin Trans. 1, 1988, 2955.
- 3) Similar transformations have also been achieved in thymidine series in this laboratory.
- 4) Elemental analysis values for all new compounds are satisfactory.
- 5) 1 H NMR (DMSO- 1 G) (500 MHz) 6 = 2.82 (1H, d, 1 J_{gem}=11.9 Hz, 1 H₅, a), 2.98 (1H, d, 1 J_{gem}=11.9 Hz, 1 H₅, b), 4.04 (1H, s, 1 H₄,), 4.27 (1H, s, 1 H₃,), 3.49 (1H, s, 1 H₂,), 5.59 (1H, s, 1 H₁), 2.50 (1H, dd, 1 J_{gem}=15.9 Hz, 1 J_{5a},6=4.4 Hz, 1 H_{5a}), 2.95 (1H, dd, 1 J_{gem}=15.9 Hz, 1 J_{5b},6=13.1 Hz, 1 H_{5b}), 4.61 (1H, dd, 1 J₆,5a=4.4 Hz, 1 J₆,5b=13.1 Hz, 1 H₆), 5.38 (1H, br s, 1 D₂O-exchangeable, 3'-OH), 10.25 (1H, s, 1 D₂O-exchangeable, 3-NH).
- 6) A similar Michael type of 5,6-addition of the 5'-amino group in 5'-amino-5'-deoxy-2',3'-isopropylideneuridine was reported: K. Isono and T. Azuma, Chem. Pharm. Bull., 20, 193 (1972).
- 7) $\underline{4}$ decomposed between 267 and 280 °C; UV (MeOH) 207 (ε 10700) and 264 (7000) nm.
- 8) 1 H NMR (DMSO- 1 d) (500 MHz): $\underline{4}$ a (one isomer) δ = 1.77 (3H, s, $\underline{\text{CH}}_{3}\text{CO}$), 3.63 (1H, d

 J_{gem} =10.7 Hz, $H_{5'a}$), 3.80 (1H, d, J_{gem} =10.7 Hz, $H_{5'b}$), 4.34-4.54 (3H, m, $H_{2'}$, $H_{3'}$ and $H_{4'}$), 5.49 (1H, dd, $J_{5,6}$ =7.95 Hz, $J_{5,3-NH}$ =2.38 Hz, H_{5}), 6.08 (1H, br s, D_{2} 0-exchangeable, 3'-OH), 6.16 (1H, s, $H_{1'}$), 7.66 (1H, d, $J_{6,5}$ =7.95 Hz, H_{6}), 11.2 (1H, br s, D_{2} 0-exchangeable, 3-NH). 4b (another isomer): δ = 1.67 (1H, s, C_{13} CO), 3.40 (1H, d, J_{gem} =12.0 Hz, $H_{5'a}$), 3.52 (1H, d, J_{gem} =12.0 Hz, $J_{5'b}$), 4.35-4.54 (3H, m, $H_{2'}$, $H_{3'}$ and $H_{4'}$), 5.56 (1H, dd, $J_{5,6}$ =7.95 Hz, $J_{5,3-NH}$ =2.39 Hz, $J_{5,3}$ 0-exchangeable, 3'-OH), 6.12 (1H, s, J_{11}), 7.58 (1H, d, $J_{6,5}$ =7.95 Hz, $J_{6,5}$

- 9) The possibility that either of $\underline{4}a$ and $\underline{4}b$ is a 3'- $\underline{0}$ -acetylated analogue is precluded by the presence of normal 6.08 and 6.16 ppm signals for 3'-OH's and the absence of any signals corresponding to aliphatic imine protons which should resonate usually at 0.4-3.5 ppm. Moreover, the signal of the $H_{5'a}$ as well as $H_{5'b}$ of each isomer is a clear-cut doublet, no <u>vic</u>-coupling being observed.
- 10) mp above 300 °C; UV (MeOH) 214 (ϵ 23500) and 266 (12400) nm; ¹H NMR (DMSO-d₆) (500 MHz) δ = 3.40 (1H, d, J_{gem} =11.1 Hz, $H_{5'a}$), 3.43 (1H, d, J_{gem} =11.1 Hz, $H_{5'b}$), 4.33 (1H, t, $J_{2',3'}$ =2.38 Hz, $J_{2',1'}$ =1.59 Hz, $H_{2'}$), 4.50 (1H, d, $J_{3',2'}$ =2.38 Hz, $H_{3'}$), 4.57 (1H, s, $H_{4'}$), 5.62 (1H, d, $J_{5,6}$ =8.0 Hz, H_{5}), 5.90 (1H, d, $J_{1',2'}$ =1.59 Hz, $H_{1'}$), 6.51 (1H, br s, D_{2} 0-exchangeable, 3'-OH), 7.83 (1H, d, $J_{6,5}$ =8.0 Hz, H_{6}), 8.92 (1H, br s, D_{2} 0-exchangeable, N_{Ha}), 10.73 (1H, br s, D_{2} 0-exchangeable, N_{Ha}), 10.73 (1H, br s, D_{2} 0-exchangeable, N_{Ha}), 10.73 (1H, br s, D_{2} 0-exchangeable, N_{Hb}), 11.40 (1H, s, D_{2} 0-exchangeable, N_{Ha}), 3-NH).
- 11) Unpublished.

(Received January 24, 1989)